多语言展示
当前在线:1314今日阅读:168今日分享:49

数字推理复习技巧

数字推理是每年国考的必考题,虽然体量不大,但是对于考生之间拉开分数差距却有重大的意义,因此再次特别讲一讲数字推理复习技巧
工具/原料
1

考友一名(互相出数字推理题,充满乐趣)

2

公务员考试qq群一个(长期有大量的数字推理题)

3

行测纸质复习资料(数字推理专题)

5

收藏一个电脑在线做题网站(如591up公务员考试应战平台)

6

收藏一个手机在线做题网站

步骤/方法
1

二、解题方法 按数字之间的关系,可将数字推理题分为以下十种类型: 1.和差关系。又分为等差、移动求和或差两种。 (1)等差关系。这种题属于比较简单的,不经练习也能在短时间内做出。建议解这种题时,用  口算。 12,20,30,42,() 127,112,97,82,() 3,4,7,12,(),28 (2)移动求和或差。从第三项起,每一项都是前两项之和或差,这种题初次做稍有难度,做多 了也就简单了。 1,2,3,5,(),13 A 9  B 11     C 8    D7 选C。1+2=3,2+3=5,3+5=8,5+8=13 2,5,7,(),19,31,50 A 12  B 13  C 10  D11 选A 0,1,1,2,4,7,13,() A 22 B 23 C 24 D 25 选C。注意此题为前三项之和等于下一项。一般考试中不会变态到要你求前四项之和,所以个人感觉这属于移动求和或差中最难的。 5,3,2,1,1,() A-3 B-2  C 0  D2 选C。

2

2.乘除关系。又分为等比、移动求积或商两种 (1)等比。从第二项起,每一项与它前一项的比等于一个常数或一个等差数列。 8,12,18,27,(40.5)后项与前项之比为1.5。 6,6,9,18,45,(135)后项与前项之比为等差数列,分别为1,1.5,2,2.5,3 (2)移动求积或商关系。从第三项起,每一项都是前两项之积或商。 2,5,10,50, (500) 100,50,2,25,(2/25) 3,4,6,12,36,(216) 此题稍有难度,从第三项起,第项为前两项之积除以2 1,7,8,57,(457)   后项为前两项之积+1

3

3.平方关系   1,4,9,16,25,(36),49   66,83,102,123,(146)   8,9,10,11,12的平方后+2

4

4.立方关系   1,8,27,(81),125   3,10,29,(83),127    立方后+2   0,1,2,9,(730)     有难度,后项为前项的立方+1

5

5.分数数列。一般这种数列出难题较少,关键是把分子和分母看作两个不同的数列,有的还需进  行简单的通分,则可得出答案   1/2  4/3  9/4  16/5  25/6  (36/7)  分子为等比,分母为等差  2/3  1/2  2/5  1/3 (1/4)       将1/2化为2/4,1/3化为2/6,可知  下一个为2/8

6

6.带根号的数列。这种题难度一般也不大,掌握根号的简单运算则可。限于计算机水平比较烂, 打不出根号,无法列题。

7

7.质数数列   2,3,5,(7),11  4,6,10,14,22,(26)  质数数列除以2  20,22,25,30,37,(48) 后项与前项相减得质数数列。

8

8.双重数列。又分为三种: (1)每两项为一组,如   1,3,3,9,5,15,7,(21) 第一与第二,第三与第四等每两项后项与前项之比为3   2,5,7,10,9,12,10,(13)每两项之差为3   1/7,14,1/21,42,1/36,72,1/52,() 两项为一组,每组的后项等于前项倒数*2 (2)两个数列相隔,其中一个数列可能无任何规律,但只要把握有规律变化的数列就可得出结果。   22,39,25,38,31,37,40,36,(52) 由两个数列,22,25,31,40,()和39,38,37,36组成,相互隔开,均为等差。   34,36,35,35,(36),34,37,(33) 由两个数列相隔而成,一个递增,一个递减 (3)数列中的数字带小数,其中整数部分为一个数列,小数部分为另一个数列。   2.01, 4.03,  8.04,  16.07,  (32.11)  整数部分为等比,小数部分为移动求和数列。双重数列难题也较少。能看出是双重数列,题目一般已经解出。特别是前两种,当数字的个数超过7个时,为双重数列的可能性相当大。

9

9.组合数列。 此种数列最难。前面8种数列,单独出题几乎没有难题,也出不了难题,但8种数列关系两两组合,变态的甚至三种关系组合,就形成了比较难解的题目了。最常见的是和差关系与乘除关系组合、和差关系与平方立方关系组合。只有在熟悉前面所述8种关系的基础上,才能较好较快地解决这类题。 1,1,3,7,17,41() A 89 B 99 C 109 D 119 选B。此为移动求和与乘除关系组合。第三项为第二项*2+第一项  65,35,17,3,() A 1  B 2  C 0  D 4 选A。平方关系与和差关系组合,分别为8的平方+1,6的平方-1,4的平方+1,2的平方-1,下一个应为0的平方+1=1  4,6,10,18,34,() A 50  B 64  C 66  D 68 选C。各差关系与等比关系组合。依次相减,得2,4,8,16(),可推知下一个为32,32+34=66  6,15,35,77,() A 106 B 117 C 136 D 163 选D。等差与等比组合。前项*2+3,5,7依次得后项,得出下一个应为77*2+9=163  2,8,24,64,() A 160 B 512  C 124  D 164 选A。此题较复杂,幂数列与等差数列组合。2=1*2的1次方,8=2*2的平方,24=3*2的3次方,64=4*2的4次方,下一个则为5*2的5次方=160  0,6,24,60,120,() A 186 B 210 C 220 D 226 选B。和差与立方关系组合。0=1的3次方-1,6=2的3次方-2,24=3的3次方-3,60=4的3次方-4,120=5的3次方-5。  1,4,8,14,24,42,() A 76  B 66  C 64  D68 选A。两个等差与一个等比数列组合 依次相减,得3,4,6,10,18,() 再相减,得1,2,4,8,(),此为等比数列,下一个为16,倒推可知选A。 10.其他数列。   2,6,12,20,() A 40  B 32  C 30  D 28 选C。2=1*2,6=2*3,12=3*4,20=4*5,下一个为5*6=30   1,1,2,6,24,() A 48 B 96 C 120 D 144 选C。后项=前项*递增数列。1=1*1,2=1*2,6=2*3,24=6*4,下一个为120=24*5   1,4,8,13,16,20,() A20  B 25  C 27  D28 选B。每三项为一重复,依次相减得3,4,5。下个重复也为3,4,5,推知得25。   27,16,5,(),1/7 A 16  B 1  C 0  D 2 选B。依次为3的3次方,4的2次方,5的1次方,6的0次方,7的-1次方。 这些数列部分也属于组合数列,但由于与前面所讲的和差,乘除,平方等关系不同,故在此列为其他数列。这种数列一般难题也较多。 综上所述,行政推理题大致就这些类型。至于经验,我想,要在熟练掌握各种简单运算关系的基础上,多做练习,对各种常见数字形成一种知觉定势,或者可以说是条件反射。看到这些数字时,就能立即大致想到思路,达到这种程度,一般的数字推理题是难不了你了。

注意事项

数字推理很容易卡住,要学会放弃,另外可以根据数字趋势,奇偶性,选项特点进行猜测

推荐信息