法向量一般直接看系数,,面的标准方程是ax+by+cz+d=0.法向量就是是(a,b,c);方向向量一般指的是线的方向向量.线可以由参数方程构成,也可以由2个面来表示.线的标准参数方程x=lt+a,y=mt+b,z=nt+c.方向向量是(l,m,n)。一、法向量的求解1、首先对该立体图形建立坐标系,如果能建,则可求面的法向量 : 2、尽量在图中找到垂直于面的向量 ;3、如果找不到,那么就设法向量n=(x,y,z), 然后因为法向量垂直于面,所以n垂直于面内两相交直线,可列出两个含有x、y、z的方程,两个方程中有三个未知数,解不出一个唯一的解。但可以根据题目情况、计算方便,使z(或x或y)等于一个具体的数,就变成了两个未知量两个方程的方程组了,是可解方程组,解出唯一的解,就是设的那个法向量n(x,y,z)了。扩展资料:方向向量的求解只要给定直线,便可构造两个方向向量(以原点为起点)。(1)即已知直线l:ax+by+c=0,则直线l的方向向量为=(-b,a)或(b,-a);(2)若直线l的斜率为k,则l的一个方向向量为=(1,k);(3)若A(x1,y1),B(x2,y2),则AB所在直线的一个方向向量为=(x2-x1,y2-y1)。