多语言展示
当前在线:287今日阅读:155今日分享:35

三点共线定理是什么

三点共线定理:若OC=λOA+μOB,且λ+μ=1,则A、B、C三点共线。共线向量也就是平行向量,方向相同或相反的非零向量叫平行向量,表示为a∥b,任意一组平行向量都可移到同一直线上,所以称为共线向量。证明过程:AC=OC-OA=λOA+μOB-OA=μOB+(λ-1)OA=μ(OB-OA)。而AB=OB-OA,即AB=μAC,故A、B、C三点共线。三点共线的证明方法:1、取两点确立一条直线,计算该直线的解析式。代入第三点坐标看是否满足该解析式(直线与方程)。2、设三点为A、B、C ,利用向量证明:λAB=AC(其中λ为非零实数)。3、利用点差法求出AB斜率和AC斜率,相等即三点共线。4、用梅涅劳斯定理。5、利用几何中的公理“如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线”,可知:如果三点同属于两个相交的平面则三点共线。6、运用公(定)理“过直线外一点有且只有一条直线与已知直线平行(垂直)”,其实就是同一法。
推荐信息