这个系列文章讲解高等数学的基础内容,注重学习方法的培养,对初学者不易理解的问题往往会不惜笔墨加以解释,并配以一些例题,大多为扎实基础的常规性题目和帮助加深理解的概念辨析题,难度适中,其中包含一些考研数学中的经典题目。本系列文章适合作为初学高等数学的课堂同步辅导,高数期末复习以及考研第一轮复习时的参考资料。既然是入门,就要舍去一些难度较大或不适合初学者的内容(例如用ε-δ语言证明极限,以及教材中多数定理的证明),有些较深入的问题(例如无穷大与无界的区别和联系,导函数的特性,拉格朗日中值定理的证明思路等)我们会以专题文章的形式给出,供有兴趣的读者选读。本系列上一篇见下面的“经验引用”3高等数学入门——极限中符号o和~的用法(下)
工具/原料
高等数学基础知识
方法/步骤
1
从指数函数和对数函数谈起。
2
无穷大的比较。
3
常见无穷大的比较。
4
证明举例。
5
评注。
6
拓展阅读:两个著名的渐近公式。
注意事项
1
感谢您的浏览,如果本经验对您有所帮助,欢迎您投票、转发、收藏和评论。
2
欢迎您继续阅读本系列的后续文章,后续文章更新后可在本人的经验首页找到。
上一篇:初中数学比较大小
下一篇:无穷小的阶数怎么判断