多语言展示
当前在线:1391今日阅读:67今日分享:39

罗尔定理证明题中构造辅助函数的基本方法

这个系列文章讲解高等数学的基础内容,注重学习方法的培养,对初学者不易理解的问题往往会不惜笔墨加以解释,并配以一些例题,大多为扎实基础的常规性题目和帮助加深理解的概念辨析题,难度适中,其中包含一些考研数学中的经典题目。本系列文章适合作为初学高等数学的课堂同步辅导,高数期末复习以及考研第一轮复习时的参考资料。既然是入门,就要舍去一些难度较大或不适合初学者的内容(例如用ε-δ语言证明极限,以及教材中多数定理的证明),有些较深入的问题(例如无穷大与无界的区别和联系,拉格朗日中值定理的证明思路等)我们会以专题文章的形式给出,供有兴趣的读者选读。本系列上一篇见下面的“经验引用”。23应用罗尔定理讨论方程根的分布
工具/原料

高等数学基础知识

方法/步骤
1

概述。       罗尔定理虽是微分中值定理中最基础的一个,但其应用相当广泛,许多涉及中值定理的证明题都可以用罗尔定理解决。       中值定理证明题的普遍难点在于辅助函数的构造。(甚至可以说这是唯一难点,如果告诉你用什么辅助函数,就差不多等于告诉你答案了。)辅助函数的构造法虽千差万别,但也不是毫无规律可循。“条件变形”和“原函数法”是解罗尔定理证明题时两种构造辅助函数的常用方法,本节我们通过几个例题具体介绍。(“条件变形”能解决的题目通常比较容易,我们重点介绍“原函数法”。)

2

用条件变形构造辅助函数的例题。

3

“原函数法”的基本思路。

4

利用原函数法构造辅助函数的例题。

5

构造两个函数乘积形式的辅助函数。

6

一个难度较大的考研题。      下面例题是1995年数一考题,难度较大,我们着重谈谈解题思路,证明细节请读者自己补全。

7

习题。

注意事项
1

感谢您的浏览,如果本经验对您有所帮助,欢迎您投票、转发、收藏和评论。

2

欢迎您继续阅读本系列的后续文章,后续文章更新后可在本人的经验主页找到。

推荐信息