多语言展示
当前在线:1657今日阅读:176今日分享:34

python中numpy的数组数学运算

python中的numpy是科学计算的库,掌握矩阵或者数组的数学运算非常必要。下面,小编将叫大家numpy中的基本的数学运算。
工具/原料
1

python 3.7

2

numpy库

方法/步骤
1

元素运算:numpy中数组中对应元素的运算操作如+,-,*,/。举个例子:import numpy as npx = np.array([[1,2],[3,4]], dtype=np.float64)y = np.array([[5,6],[7,8]], dtype=np.float64)# Elementwise sum; both produce the array# [[ 6.0  8.0]#  [10.0 12.0]]print(x + y)print(np.add(x, y))# Elementwise difference; both produce the array# [[-4.0 -4.0]#  [-4.0 -4.0]]print(x - y)print(np.subtract(x, y))# Elementwise product; both produce the array# [[ 5.0 12.0]#  [21.0 32.0]]print(x * y)print(np.multiply(x, y))# Elementwise division; both produce the array# [[ 0.2         0.33333333]#  [ 0.42857143  0.5       ]]print(x / y)print(np.divide(x, y))# Elementwise square root; produces the array# [[ 1.          1.41421356]#  [ 1.73205081  2.        ]]print(np.sqrt(x))

2

结果显示:[[ 6.  8.] [10. 12.]][[ 6.  8.] [10. 12.]][[-4. -4.] [-4. -4.]][[-4. -4.] [-4. -4.]][[ 5. 12.] [21. 32.]][[ 5. 12.] [21. 32.]][[0.2        0.33333333] [0.42857143 0.5       ]][[0.2        0.33333333] [0.42857143 0.5       ]][[1.         1.41421356] [1.73205081 2.        ]]

3

numpy使用dot函数实现,向量间的内积,矩阵乘法等运算。举个例子:import numpy as npx = np.array([[1,2],[3,4]])y = np.array([[5,6],[7,8]])v = np.array([9,10])w = np.array([11, 12])# Inner product of vectors; both produce 219print(v.dot(w))print(np.dot(v, w))# Matrix / vector product; both produce the rank 1 array [29 67]print(x.dot(v))print(np.dot(x, v))# Matrix / matrix product; both produce the rank 2 array# [[19 22]#  [43 50]]print(x.dot(y))print(np.dot(x, y))

4

运行结果:219219[29 67][29 67][[19 22] [43 50]][[19 22] [43 50]]

5

numpy提供了许多函数对矩阵进行计算。其中最有用的是sum函数。举个例子:import numpy as npx = np.array([[1,2],[3,4]])print(np.sum(x))  # Compute sum of all elements; prints '10'print(np.sum(x, axis=0))  # Compute sum of each column; prints '[4 6]'print(np.sum(x, axis=1))  # Compute sum of each row; prints '[3 7]'

6

运行结果:10[4 6][3 7]

推荐信息