本文,使用Pascal定理,来证明Mannheim定理。
工具/原料
1
电脑
2
网络画板
方法/步骤
1
先揭示Pascal定理:如下图,A、B、C、D、M、N六点共圆,AC∩DM=E,AB∩DN=F,BM∩CN=G,那么E、F、G三点共线。
2
Mannheim定理:△ABC的外接圆与圆X切于D,圆X与线段AB、AC切于F和E。那么EF的中点G是△ABC的内切圆圆心。
3
下面开始证明:延长线段DE,与△ABC的外接圆交于M。那么M是所在弧AC的中点。
4
所以,BM就是∠ABC的平分线。
5
延长线段DF,与△ABC的外接圆交于N。那么N是所在弧AC的中点。
6
所以,CN是∠ACB的平分线。
7
BM和CN的交点,就是△ABC的内切圆圆心。
8
根据Pascal定理,可以发现,E、F、G三点共线。
9
因为AE和AF是圆X的切线段,所以AE=AF,所以G是EF中点。
上一篇:勾股定理的证明方法?
下一篇:议论文的论证方法