国考行测
例:单杠上挂着一条4米长的爬绳,小赵每次向上爬1米又滑下半米,问小赵几次才能爬上单杠?(1)一周期中,小赵先先向上1米,再下滑0.5米。所以一个完整的周期小赵会向上运动0.5米。(2)小赵上单杠一定是在向上运动过程,所以预留峰值一米长度。(3)剩余三米,需要留个完整周期达到。(4)最后一米再爬一次,故共七次到达单杠。
二、青蛙跳井与工程问题结合----有负效率的交替合作这类工程问题当中,由于存在了负效率,就类似于先向上爬又下滑的青蛙跳井问题。我们用一道经典模型题目来进行了解:一水池有甲和乙两根进水管,丙一根排水管。空池时,单开甲水管,5小时可将水池注满水;单开乙水管,6小时可将水池注满水;满池水时单开丙管,4小时可排空水池。如果按甲、乙、丙......的顺序轮流各开1小时,要将水池注满水需要多少小时?(1)此题目所求为乘除关系,且对应量未知,可以先设特殊值从而简化运算。一般可以将工作总量设为时间的最小公倍数,设为60。则我们可以得出甲管的效率为12,乙效率10,丙效率-15。那么完整的一个周期是由甲乙先注入水,丙再排水,效率和为7。效率峰值达到22。(2)注满池水,一定是在甲乙两管做正效率的过程中发生的。所以先预留出22。剩余38需要注入。(3)38的水量需要6个完整的循环才能达到。(4)六个循环后,共注入水量42。还剩18需要注入。(5)18需要甲注入一小时,乙注入0.6小时。(6)共计19.6小时。
这就是我们工程问题当中最常考的一类青蛙跳井问题的题目,题型解答过程相对固定套路化,只是在问题的最终问法对象上稍有不同,我们只要加以区别即可。
综上所述,我们经过观察无论是经典的青蛙跳井问题,还是青蛙跳井在工程问题中的变形,其本质都是一个循环问题,因此我们在做此类题目时一定要注意以下两个关键点:(1)最小循环周期;(2)一个循环周期内的效率和。只要抓住这两个关键点,我们就能够更加熟练顺畅的解决好青蛙跳井问题及其变形题目。