左右导数存在的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。基本的导数公式:1、C'=0(C为常数)。2、(Xn)'=nX(n-1)(n∈R)。3、(sinX)'=cosX。4、(cosX)'=-sinX。5、(aX)'=aXIna(ln为自然对数)。6、(logaX)'=(1/X)logae=1/(Xlna)。7、(tanX)'=1/(cosX)2=(secX)2。8、(cotX)'=-1/(sinX)2=-(cscX)2。9、(secX)'=tanX。10、(cscX)'=-cotX。
上一篇:怎么证明偏导数连续
下一篇:微分的定义及其与导数的关系