半变异函数/协方差建模是空间描述和空间预测之间的关键步骤。地统计的主要应用是预测未采样位置处的属性值(克里金法)。 经验半变异函数和协方差可提供有关数据集的空间自相关的信息。但是,不提供所有可能方向和距离的信息。因此,为确保克里金法预测的克里金法方差为正值,根据经验半变异函数/协方差拟合模型(即连续函数或曲线)是很有必要的。
工具/原料
1
计算机
2
arcgis
方法/步骤
1
经验半变异函数/协方差值的不同视图 地统计向导可提供经验半变异函数值的三种不同视图。可以使用任意数量(一个、两个或全部三个)的视图来帮助您根据数据拟合模型。默认视图显示了已丢弃和已平均化的经验半变异函数/协方差值。 已丢弃值显示为红色的点,是通过使用宽为一个步长的方形像元将经验半变异函数/协方差点组合(分组)在一起后生成的。平均点显示为蓝色的十字符号,是通过将处于圆周分区内的经验半变异函数/协方差点进行分组后生成的。丢弃点显示半变异函数/协方差值中的局部变化,而平均值显示半变异函数/协方差值的平滑变化。在很多情况下,根据平均值拟合模型会更容易一些,因为它们将为数据中的空间自相关提供相对简洁的视图,与丢弃点相比,平均值将显示的半变异函数值的变化更为平滑。 显示点控件可以设置为“已丢弃和已平均化”(如上图所示)、“已丢弃”或“已平均化”。 此外,还可以向图中添加线。这些线是根据已丢弃的经验半变异函数/协方差值进行拟合的局部多项式。如果将显示搜索方向选项设置为 True,则只会显示根据“显示搜索方向”工具的中轴样带中经验半变异函数/协方差表面拟合的局部多项式,如下图所示: 根据经验数据拟合的半变异函数/协方差模型应该: 1、穿过已丢弃值(红色的点)云的中心。 2、穿过尽可能接近平均值(蓝色的十字符号)的位置。 3、穿过尽可能接近线(绿色的线)的位置。 请记住,即使模型没有完全拟合经验数据,您对现象的认识也可以决定模型的形状和块金以及变程值、偏基台值和各向异性值(回想一下,经验数据只是要构建的真实现象模型的样本,并不能完全代表真实现象的所有空间和统计方面)。
上一篇:计算机控制心肺复苏模型功能特点
下一篇:利用R软件进行回归分析