没有行最简型行列式,只有行最简形矩阵。行最简形矩阵:在矩阵中可画出一条阶梯线,线的下方全为0,每个台阶只有一行,台阶数即是非零行的行数,阶梯线的竖线(每段竖线的长度为一行)后面的第一个元素为非零元,也就是非零行的第一个非零元,则称该矩阵为行阶梯矩阵。若非零行的第一个非零元都为1,且这个非零元所在的列的其他元素都为0,则称该矩阵为行最简形矩阵。扩展资料:变换下列三种变换称为矩阵的行初等变换:(1)对调两行;(2)以非零数k乘以某一行的所有元素;(3)把某一行所有元素的k倍加到另一行对应元素上去。将定义中的“行”换成“列”,即得到矩阵的初等列变换的定义。矩阵的初等行变换与矩阵的初等列变换,统称为矩阵的初等变换。有如下定理成立:任一矩阵可经过有限次初等行变换化成阶梯形矩阵;任一矩阵可经过有限次初等行变换化成行最简形矩阵;矩阵在经过初等行变换化为最简形矩阵后,再经过初等列变换,还可以化为最简形矩阵,因此,任一矩阵可经过有限次初等变换化成标准形矩阵。参考资料来源:——行最简形矩阵
上一篇:描写四月的诗句有哪些
下一篇:行之有效的学习方法指导