反比例函数的基本性质
导数的基本知识
微积分与面积的相关内容
当k>0的时候,主要研究第一象限的情形,此时通过定积分,可以得到面积的表达式为:S=∫(a,b) k/y dy=k ∫(a,b)dy/y=k lny (a,b)=k(lnb-lna)=kln(b/a) 平方单位。
举例:求反比函数为y=2/x,与直线y=1,y=2,以及y轴围成的面积:解:面积s=∫(1,2) 2/y dy=2∫(1,2)dy/y=2lny(1,2)=2(ln2-ln1)=2ln2平方单位。
当k>0的时候,主要研究第三象限的情形,此时通过定积分,可以得到面积的表达式为:S=∫(a,b)(0- k/y)dy=-k ∫(a,b)dy/y=-k lny (a,b)=k(lna-lnb)=kln(a/b) 平方单位。
举例:求反比函数为y=2/x,与直线x=-1,x=-2,以及y轴围成的面积:解:面积s=∫(-2,-1)(0-2/y) dy=-2∫(-2,-1)dy/y=-2ln|y|(-2,-1)=-2(ln1-ln2)=2ln2平方单位。
当k<0的时候,主要研究第二象限的情形,此时通过定积分,可以得到面积的表达式为:S=∫(a,b) (0-k/y) dy=-k ∫(a,b)dy/y=-k lny (a,b)=-k(lnb-lna)=kln(a/b).
举例:求反比函数为y=-2/x,与直线y=1,y=2,以及y轴围成的面积:解:面积s=∫(1,2) [0-(-2/x)] dy=2∫(1,2) dy/x=2lnx(1,2)=2(ln2-ln1)=2ln2平方单位。
当k<0的时候,主要研究第四象限的情形,此时通过定积分,可以得到面积的表达式为:S=∫(a,b) (k/y-0) dy=k ∫(a,b)dy/y=k lny (a,b)=k(lnb-lna)=kln(a/b) 平方单位。
举例:求反比函数为y=-2/x,与直线y=-1,y=-2,以及y轴围成的面积:解:面积s=∫(-2,-1) (-2/y-0) dy=-2∫(-2,-1) dy/y=-2ln|y|(-2,-1)=-2(ln1-ln2)=2ln2平方单位。
出现负数情况时,对数y=lnx,应对x取绝对值。
- 1
反比例函数和两条平行x轴直线所围成区域的面积
- 2
反比例函数的比例系数是什么
- 3
晋思羽结局
- 4
怪物变成美女问男主是什么动漫
- 5
怎样做西兰花好吃
- 6
西蓝花怎么做好吃?
- 7
做法简单又营养好吃的西兰花要怎样做
- 8
西蓝花怎么做好吃
- 9
西兰花怎么做最好吃
- 10
几年前看过的一个外国电影,男主角疑似地狱死神什么的,偶然有一天附身在一个男人身上,和女主角暧昧
- 11
西兰花的简单做法
- 12
西兰花家常的做法
- 13
如何蒸西兰花
- 14
上汤西兰花的做法窍门
- 15
西兰花米粥怎么做
- 16
健身水煮西兰花怎么煮
- 17
简单的水煮西兰花
- 18
如何使心情变好
- 19
林无隅第几章对丁霁表白
- 20
铃声多多设置心情方法分享
- 21
怎样做心情会变好?
- 22
心情不好时怎么办、如何让心情愉悦起来?
