反比例函数的基本性质
导数的基本知识
微积分与面积的相关内容
当k>0的时候,主要研究第一象限的情形,此时通过定积分,可以得到面积的表达式为:S=∫(a,b) k/y dy=k ∫(a,b)dy/y=k lny (a,b)=k(lnb-lna)=kln(b/a) 平方单位。
举例:求反比函数为y=2/x,与直线y=1,y=2,以及y轴围成的面积:解:面积s=∫(1,2) 2/y dy=2∫(1,2)dy/y=2lny(1,2)=2(ln2-ln1)=2ln2平方单位。
当k>0的时候,主要研究第三象限的情形,此时通过定积分,可以得到面积的表达式为:S=∫(a,b)(0- k/y)dy=-k ∫(a,b)dy/y=-k lny (a,b)=k(lna-lnb)=kln(a/b) 平方单位。
举例:求反比函数为y=2/x,与直线x=-1,x=-2,以及y轴围成的面积:解:面积s=∫(-2,-1)(0-2/y) dy=-2∫(-2,-1)dy/y=-2ln|y|(-2,-1)=-2(ln1-ln2)=2ln2平方单位。
当k<0的时候,主要研究第二象限的情形,此时通过定积分,可以得到面积的表达式为:S=∫(a,b) (0-k/y) dy=-k ∫(a,b)dy/y=-k lny (a,b)=-k(lnb-lna)=kln(a/b).
举例:求反比函数为y=-2/x,与直线y=1,y=2,以及y轴围成的面积:解:面积s=∫(1,2) [0-(-2/x)] dy=2∫(1,2) dy/x=2lnx(1,2)=2(ln2-ln1)=2ln2平方单位。
当k<0的时候,主要研究第四象限的情形,此时通过定积分,可以得到面积的表达式为:S=∫(a,b) (k/y-0) dy=k ∫(a,b)dy/y=k lny (a,b)=k(lnb-lna)=kln(a/b) 平方单位。
举例:求反比函数为y=-2/x,与直线y=-1,y=-2,以及y轴围成的面积:解:面积s=∫(-2,-1) (-2/y-0) dy=-2∫(-2,-1) dy/y=-2ln|y|(-2,-1)=-2(ln1-ln2)=2ln2平方单位。
出现负数情况时,对数y=lnx,应对x取绝对值。
- 1
反比例函数和两条平行x轴直线所围成区域的面积
- 2
反比例函数的比例系数是什么
- 3
怎样修改网站标题名称
- 4
如何给文章起标题
- 5
如何给经验取一个好标题
- 6
怎么样写标题? 6招教你写出有吸引力的标题
- 7
软文标题的7大命名规则
- 8
图表标题怎么命名
- 9
如何给文章定一个吸引人的标题?
- 10
我们在撰写网络文章传播时怎么名标题好
- 11
头条爆文标题怎么起?你不知的15爆文标题套路
- 12
关于起点的标题有哪些
- 13
论文标题怎么写
- 14
学术论文标题拟定有妙招
- 15
如何取吸引人的标题!
- 16
初始化pcm解码器失败怎么修复
- 17
剃须刀片不锋利了如何维修?
- 18
摩托车没劲得修理和维护
- 19
移动硬盘出现故障后如何维修
- 20
如何维修有线鼠标的断路,跟接触不良问题
- 21
地磅常见故障维修方法
- 22
四维彩超最佳时间是什么时候
